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Abstract

In this paper, we describe the system designed for the TREC
2018 Precision Medicine track by the University of Texas at
Dallas (UTD) Human Language Technology Research Insti-
tute (HLTRI). Our system extends the system submitted for
the 2017 track which incorporates an aspect-based retrieval
paradigm wherein each of the four structured components
of the topic is cast as a separate aspect, along with two “hid-
den” aspects encoding the need that retrieved documents be
within the domain of precision medicine and that retrieved
documents have a focus on treatment. For the 2018 system,
in addition to the aspect-based retrieval, we incorporated
learning-to-rank (L2R). Our experiments show that our L2R
approach leads to improved quality of retrieved clinical trials,
but degrades performance for scientific articles.

1 Introduction

The 2018 Text REtrieval Conference (TREC) Precision Medicine
Track aims to address the important clinical challenge of
providing useful precision-medicine related information to
clinicians treating patients with cancer. Specifically, partici-
pants are invited to devise automatic and/or manual systems
capable of (1) obtaining pertinent scientific articles from
the medical literature describing the precise treatment of
tumors exhibiting specific genetic mutations of alterations;
and (2) identifying clinical studies in the National Library of
Medicine (NLM)’s ClinicalTrals.gov database that investigate
drugs targeting the patient’s malignancy and for which the
patient might be eligible.

In this paper, we present an extension of our system de-
signed for the TREC 2017 Precision Medicine Track. As the
track specifically emphasizes that retrieved scientific arti-
cles and clinical trials should have a focus on treatment, we
cast both tasks as a hybrid question answering (Q&A) and
information retrieval (IR) problem. Formally, we consider a
topic (as exemplified in Figure 1) to be asking an implicit
question, What is the best treatment for the patient described
by the topic? To answer this question, we adapt techniques
for Q&A from knowledge bases by generating and using
a knowledge graph encoding relationships between drugs,
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Topic 4

DISEASE: melanoma
GENE: BRAF (V600E), NRAS (Q61R)
DEMOGRAPHIC: 67-year-old male

Topic 14

DISEASE: melanoma
GENE: KIT amplification
DEMOGRAPHIC: 66-year-old female

Topic 22

DISEASE: melanoma
GENE: no tumor infiltrating lymphocytes
DEMOGRAPHIC: 74-year-old female

Figure 1. Example topics evaluated in the 2018 TREC Preci-
sion Medicine Track.

genes, and mutations. This allows us to retrieve articles dis-
cussing both the topic and its inferred answers by incorporat-
ing an aspect-based retrieval strategy based on rank fusion
and learning-to-rank.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the data evaluated in the 2018 TREC Preci-
sion Medicine track, Section 3 details our approach, Section
4 describes each of the runs we submitted, Section 5 reports
initial results, and Section 6 summarizes the conclusions.

2 The Data

Two separate document collections were used for the Preci-
sion Medicine track: scientific abstracts and clinical trials.

2.1 Scientific Abstracts

The scientific abstracts considered in Task A originated from
two sources: (1) MEDLINE abstracts, and (2) Conference
Proceedings.

MEDLINE Articles A January 2017 snapshot of MEDLINE
abstracts was used for the scientific abstracts. The task orga-
nizers provided both a rich XML and simple textual represen-
tation for all abstracts. In this work, we considered the XML
representation which provided, in addition to the textual
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Figure 2. Architecture of Multi-task Retrieval System

content of the article, a variety of metadata including Med-
ical Subject Headings (MeSH), keywords, and a controlled
vocabulary of studied chemical compounds.

Conference Proceedings Because many of the topics eval-
uated in TREC PM were highly specific, the organizers also
included abstracts of articles published in the proceedings of
the annual meetings of the American Association for Cancer
Research (AACR) and American Society of Clinical Oncol-
ogy (ASCO). These articles were included with the intent to
provide potentially relevant reports/articles describing pre-
cision medicine studies which are not included in MEDLINE.
It should be noted that only a simple textual representation
of articles presented at AACR/ASCO was available.

2.2 Registered Clinical Trials

For Task B, a snapshot of ClinicalTrials.gov obtained in April
2017 was considered. As with MEDLINE, both a rich XML
and simple textual representation of each clinical trial was
provided by the organizers. In this work, we considered the
XML representation.

3 The Approach

Our system, illustrated in Figure 2, includes both “on-line”
steps (i.e., steps applied for each topic) and “off-line” steps
(steps applied before any topics are considered). In terms of
on-line processing, the system has three mandatory steps:

1. Topic Analysis. The structured information of a given
topic is analyzed to determine its main components or
aspects;

2. Topic Expansion. The various aspects of the topic are
expanded using external resources;

3. Document Retrieval. The aspects of the topic are rep-
resented as queries, and a set of ranked documents,
i.e., scientific articles or clinical trials (depending on
whether the system is configured for Task A or B), is
retrieved;

as well as three “optional” steps designed to improve the
quality of retrieved documents:

4. Aspect Fusion (Optional). The ranked documents sepa-
rately retrieved for each aspect of the topic are com-
bined or fused together;

5. Similarity Fusion (Optional). The ranked documents
retrieved using multiple similarity measures (i.e., rele-
vance models) are fused together.

6. Learning to Rank (Optional). The ranked documents
are re-ranked using a Random Forest classifier trained
on the relevance judgments produced for the 2017
TREC-PM track.

In terms of off-line processing, the system relies on the avail-
ability of three data structures: (a) the Precision Medicine
Drug Graph (PMDG), (b) an index of scientific articles, and
(c) an index of clinical trials. In the remainder of this section



we describe the off-line steps used to create the above data
structures, followed by the on-line steps of our system.

HAS-SYNONYM

Gleeve

imatinib

lapatinib

Figure 3. Examples of relations in the Precision Medicine
Drug Graph (PMDG).

3.1 Building the Precision Medicine Drug Graph

Knowledge about the interactions between disease, genes,
and drugs is available in a large variety of disconnected
knowledge bases. Consequently, to unlock this knowledge,
we create a unified knowledge graph which we refer to as
the Precision Medicine Drug Graph (PMDG). The PMDG
aggregates a subset of information from a variety of knowl-
edge sources, including the Catalogue of Somatic Mutations
in Cancer (COSMIC) [10], FDA Labels, as well as the 15
data sources incorporated within the Drug-Gene Interaction
Database (DGIdb) [11].

Mlustrated in Figure 3, the PMDG represents drugs, genes,
and mutations as nodes. The PMDG encodes both binary re-

. Has-SyNoNYM
lations such as HER2 ——— neu, as well as ternary re-

CONFERS-RESISTANCE
lations such as (EGFR, T790M) imatinib.

Specifically, the PMDG encodes four types of relations: (1)
drug synonyms, (2) gene synonyms, (3) that a gene and locus
confer resistance to a drug, and (4) that a drug can target
(e.g. regulate) a specific gene and (possibly) a locus. In our
system, the PMDG is used for both Topic Analysis and Topic
Expansion.

3.2 Indexing the Data

We maintain two separate indices corresponding to the two
tasks evaluated in the track.

3.2.1 Indexing for Task A

For task A, we maintain an tiered index including both MED-
LINE articles and articles published in AACR/ASCO Pro-
ceedings. Because the MEDLINE articles are available in
a rich XML format and the AACR/ASCO proceedings are
only available as text, the indexing strategy varies for each
dataset.

Indexing MEDLINE Articles The National Library of Medicine
(NLM) provides an abundance of metadata about each article
indexed in MEDLINE. In this work, we indexed a total of
eight fields of metadata:

e PubMed ID (PMID): the unique identifier assigned to
each document in MEDLINE, used as the document ID
for TREC PM submissions;

FJournal Title: the NLM version of the International
Standards Organization (ISO) abbreviation of the title
of the journal containing the article;

Publication Date: the date the article was submitted
to MEDLINE (specifically, the date when MEDLINE
processing began for the article);

Article Title: the (possibly-translated) title of the article;
Publication Type(s): the Medical Subject Headings (MeSH)
[13] unique identifiers for all publication types associ-
ated with the article;

MeSH Term(s): the MeSH terms associated with the
article;

Chemical Compound(s): the MeSH terms associated
with all registered chemical compounds associated
with the article; and

Abstract Text: the full text of the abstract (note: struc-
tured abstracts are combined into a single passage).

Indexing AACR/ASCO Proceedings Because AACR/ASCO
Proceedings were only available in a simple text format, we
were only able to index a subset of the fields indexed for
MEDLINE articles:

o Article ID: the filename of the abstract as provided by
the organizers, used as the document ID for TREC PM
submissions;

e Journal Title: the name of the conference;

e Publication Date: the year of the conference;

o Article Title: the title of the article; and

o Abstract Text: the unstructured text of the article;

3.2.2 Indexing for Task B

Task B relied on an index of clinical trials registered in Clini-
calTrials.gov. While an abundance of metadata is available
for each clinical trial, much of the metadata is represented as
un-normalized free text, including date expressions, investi-
gator names, descriptions of patient eligibility, etc. Producing
the Clinical Trial index, consequently, entails two steps: (1)
pre-processing each clinical trial, and (2) indexing each clin-
ical trial.

Pre-processing Clinical Trials We observed three main
inconsistencies in the metadata associated with each clinical
trial on ClinicalTrials.gov:

1. Processing Investigator Names. Although the registry
includes separate fields for the first, middle, and last
name of each investigator, many investigators were
provided with no first name, no middle name, and their



entire name as the last name. If an investigator had no
provided first name, we relied on a series of rules to
try to recover the first and last names of investigator
from the provided names.

2. Normalizing Temporal Expressions. We found that min-
imum/maximum eligibility age was expressed in a va-
riety of ways, e.g., by years, months, weeks, or even
days. Moreover, the start date was provided in a va-
riety of inconsistent formats. To account for this, we
normalized temporal expressions using Natty?.

3. Recognizing Inclusion and Exclusion Criteria. The struc-
tured data associated with each clinical trial includes
a single unstructured field containing all eligibility
criteria. To distinguish between inclusion and exclu-
sion criteria, we used a simple rule-based strategy for
distinguishing between sections of the eligibility cri-
teria field that describe inclusion and exclusion crite-
ria. Moreover, to account for the role of negation, we
applied negation span detection using LingScope[1].
By detecting negation spans, we were able to parse
negated inclusion criteria as exclusion criteria and
negated exclusion criteria as inclusion criteria.

Indexing Clinical Trials When indexing clinical trials,
we considered a tiered index encoding multiple fields of
metadata:

e NCT ID: The unique identifier associated with each
clinical trial in ClinicalTrials.gov, used as the document
ID for TREC PM submissions.

o Brief Title: A brief summary of the clinical trial;

e Official Title: The official detailed title of the clinical
trial;

e Summary: A summary of the role and purpose of the
clinical trial;

e Description: A detailed description of the clinical trial
including the goals, study design, and experimental
setup;

e Studied Condition(s): The medical conditions studied
in the trial;

e Condition MeSH Term(s): MeSH terms associated with
the conditions studied in the trial (if any);

o Studied Intervention(s): The medical interventions (if
any) evaluated in the trial;

o Studied Intervention Type(s): The type of medical in-
terventions evaluated in the trial (e.g., genetic, drug,
etc.);

o Intervention MeSH Term(s): MeSH terms associated
with the interventions evaluated in the trial (if any);

o Minimum Age: The minimum age of eligible partici-
pants (if provided);

o Maximum Age: The maximum age of eligible partici-
pants (if provided);

Thttp://natty.joestelmach.com/

e Eligible Gender(s): The eligible gender(s) of partici-
pants;

e Inclusion Criteria: Unstructured textual representation
of all inclusion criteria parsed from the Eligibility Cri-
teria of the trial; and

o Exclusion Criteria: Unstructured textual representation
of all exclusion criteria parsed from the Eligibility Cri-
teria of the trial.

3.3 Topic Analysis

Because the topics evaluated in the 2018 TREC PM task
correspond to complex semi-structured medical cases, de-
termining the relevance of a document (i.e. scientific article
or clinical trial) to a topic requires accounting for many dif-
ferent aspects. In this, we consider a total of six aspects of
the topic: four corresponding to the three semi-structured
fields of the topic, and two additional implied or “hidden”
aspects. Unlike the previous year, the “gene” field of the topic
included both specific genetic variants (e.g., “BRAF (V600E)”)
and general descriptions of tumors (e.g., “no tumor infiltrat-
ing lymphocytes”). Consequently, when representing the
topic we distinguish between specific genetic variants, and
other types of tumor descriptions. The four explicit aspects
are represented as follows:

1. D1sease Aspect: The disease (a type of cancer) is
represented as a 2-tuple (pair) containing (1) the lit-
eral/surface form of the disease included in the topic,
and (2) the set of zero or more concept unique identi-
fiers (CUIs) in the Unified Medical Language System
(UMLS) [3] corresponding to the disease. To identify
the concepts in UMLS corresponding to each disease,
we used a simple pattern-matching approach relying
on the surface form of the disease and any matching
atoms in UMLS;

2. GENETIC Aspect: Because a topic may indicate more
than one genetic variant, we represent each genetic
variant as a 3-tuple consisting of (1) the name of the
gene, (2) the type of mutation, and (3) the locus of the
mutation (if provided). The mutation type was deter-
mined using a small number of lexical patterns; the set
of mutation types considered by our approach are: (1)
AMPLIFICATION, (2) DUPLICATION, (3) TRANSLOCATION,
(4) DELETION, (5) POINT-MUTATION, (6) INACTIVATION,
and (7) UNSPECIFIED;

3. DEMoGRAPHIC Aspect: The demographic aspect of
the topic was represented as a 2-tuple corresponding
to two facets of demographic information, the patients
age, and the patients gender; and

4. OTHER Aspect: The “other” aspect contains any ge-
netic or tumor description from the “gene” field of the
topic that is not a specific genetic variant.
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To account for the requirement that retrieved documents
have a focus on targeted treatment and precision medicine,
we considered to additional “hidden” aspects of each topic.

5. PRECISION MEDICINE Aspect: This aspect indicates
that retrieved documents must fall within the domain
of precision medicine to be considered relevant; and

6. TREATMENT Aspect: This aspect indicates that re-
trieved documents must have a focus on treatment,
and cannot be simple observational studies. To repre-
sent this aspect, we relied on the information encoded
in the PMDG. Specifically, the treatment aspect is rep-
resented as a 2-tuple including (1) drugs targeting any
gene/mutation in the topic, (2) any drugs that any
gene/mutation in the topic confers resistance against.

Together, these six aspects are used to represent the diverse
information needs expressed by each topic.

3.4 Topic Expansion

To account for the complexity of medical language in scien-
tific articles and clinical trials, we incorporate query expan-
sion techniques to expand (1) the medical problems within
the disease and other aspects of the topic, (2) each genetic
variant, and (3) any drugs in the treatment aspect of the
topic.

Expanding the Disease and Other Aspects. To account for
the role of synonymy in scientific articles and clinical trials,
we incorporate two forms of query expansion: (a) we identify
synonyms for each medical problem using UMLS and (2) we
discover hyponyms using the Systematized Nomenclature
of Medicine - Clinical Terms (SNOMED CT)[7].

Expanding the Genetic Variations. Because genetic infor-
mation can be described in a variety of ways, we expand
each gene itself so as to include gene synonyms using the
Precision Medicine Drug Graph (PMDG). We expand the
mutation type to include basic synonyms. Finally, we expand
the locus of each mutation by (1) expanding the amino acids
to their three-letter abbreviations and (2) adding the protein
identifier “p.” commonly used to indicate mutation loci in
the literature.

Expanding Drugs. We expand drugs to include both brand
names as well as generic names by using the PMDG. Specifi-
cally, we follow all syYNONYM relations originating from the
nodes corresponding to any drug in the treatment aspect,
and use those nodes as synonyms for the drug.

3.5 Document Retrieval

The role of the document retrieval step is to produce a ranked
list of documents — scientific articles or clinical trials — rel-
evant to a given topic. We considered two strategies for
document retrieval:

e Aspect Retrieval: to prevent any single aspect from
having too large of an impact on the score of a doc-
ument, in the aspect retrieval strategy, we cast each
aspect of the topic as a separate, independent query
and obtain a separate ranked list of documents for each
aspect; and

¢ Joint Retrieval: in the joint retrieval strategy, we cast
each aspect of the topic as a clause in a single disjunc-
tive Boolean query, obtaining a single ranked list of
documents for the entire topic.

Both strategies rely on Apache Lucene? (version 6.6.0). It
should be noted that the way in which each aspect was
represented as a query (or clause) depends on whether the
system is configured for Task A (scientific articles) or Task
B (clinical trials).

prevention, prophylaxis, prognosis,
outcome, survival, treatment,
therapy, personalized

Table 1. Lexicon of words indicating treatment.

AMPLIFICATION  inhibitor | antagonist |
DUPLICATION suppressor | antisense |
— blocker

TRANSLOCATION

DELETION agonist | activator | inducer |
INACTIVATION potentiator | stimulator

Table 2. Lexicon of drug roles targeting each type of genetic
mutation.

3.5.1 Retrieving Scientific Articles (Task A)

When retrieving scientific articles for a given topic, we en-
coded the DISEASE aspect as an additive disjunctive Boolean
query with a clause representing the surface form of the
disease as indicated in the topic as well as additional clauses
representing each expansion. By contrast, the GENETIC as-
pect was represented as special type of disjunctive Boolean
query in which the score of a document was determined as
the maximum score obtained for any clause in the query
(rather than the total). When encoding the GENETIC aspect,
we considered up to three clauses corresponding to (1) the
gene and its expansions, (2) the type of mutation and its
expansions, and (3) the locus (if provided) and its expansions
(if any). To ensure that scientific articles satisfy the TREAT-
MENT aspect of the topic, we produced an additive disjunctive
Boolean query in containing clauses encoding (a) the lexicon

Zhttps://lucene.apache.org/core/
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indicated in Table 1, (b) the patterns indicated in Table 2,
(c) any drugs targeting the specific mutation and type of
tumor indicated by the topic, and (d) any drugs known to be
ineffective for the specific mutation. Finally, we address the
PRECISION MEDICINE aspect by reducing the score of articles
that focus on science rather than medicine and increasing
the score of articles that appear that relate to clinical tri-
als and studies involving humans. Specifically, we penalize
the score of articles which (1) contain cell, biochem, chem,
molecular, cytogenetics, pathology, or xpathology in
the title of the journal, (2) mention the terms cell, cell line, or
cell cycle in the abstract or title of the article, and (3) have a
MeSH term of “Cell Line, Tumor”. To favor articles reporting
the results of clinical studies, we increase the score of articles
that have a MeSH term of “Human”, or include any of the
patterns indicated in Table 3. We observed that, in general,
scientific articles do not refer to the demographics or co-
morbidities of patients (an exception to this would be in the
case of tumors occurring only in men or women- such as
prostate or cervical cancer). Consequently, when searching
scientific articles, we chose to ignore the DEMOGRAPHIC and
OTHER aspects of the topic.

phase 1, phase 2, phase 3
phase I, phaseIl, phase III
trial, randomized, patient

Table 3. Lexicon of words indicating medical trials.

3.5.2 Retrieving Clinical Trials (Task B)

We observed that clinical trials often focused on general
diseases rather than specific types of cancer. For example,
when manually browsing ClinicalTrials.gov, we found that
many clinical trials study any type of “solid tumor” rather
than the specific type(s) provided in the topics evaluated in
the Precision Medicine track. Consequently, when retriev-
ing clinical trials for a given topic, we encoded the DISEASE
aspect as a disjunctive Boolean query with clauses repre-
senting (1) the surface form of the disease as indicated in
the topic, (2) each expansion of the disease, as well as the
phrases (3) “solid tumor” and (4) “solid neoplasm”. When
searching clinical trials, the GENETIC and TREATMENT aspects
were represented in the same way as when searching sci-
entific articles. The DEMOGRAPHIC aspect was represented
as a conjunctive Boolean query with three clauses ensuring
(1) the minimum eligible age for the trial was <= the age
of the patient in the topic, (2) the maximum eligible age for
the trial was >= the age of the patient in the topic, and (3)
the gender of the patient in the topic matched the eligible
genders of the trial. To encode the OTHER aspect of the topic,
we constructed a disjunctive Boolean query containing each
disease and its expansions, and penalized the score of clinical

trials which matched this query in their Exclusion Criteria
field, and slightly increased the score of clinical trials which
matched this query in their Inclusion Criteria field. Finally,
the PRECISION MEDICINE aspect was encoded as a disjunctive
Boolean query favoring clinical trials which have at least one
intervention of type “DRUG” or “GENETIC”, and/or which
include the term “Phase” in their Brief Title field.

3.6 Aspect Fusion

When documents are retrieved using the Aspect Retrieval
strategy, it is necessary to combine the ranked list of docu-
ments obtained for each aspect to produce a single ranked
list of documents relevant to the topic. This is accomplished
using a technique known as rank fusion or answer fusion.
Rank fusion is a process for combining the ranked list result-
ing from multiple searches to produce a single ranked list of
results. While a number of different methods for rank fusion
have been published, they predominantly rely on combin-
ing the different relevance scores associated with the same
document in different ranked lists. In our system, the scores
produced when searching for each aspect can vary by several
orders of magnitude, making score-based rank fusion tech-
niques difficult to apply. Thus, we rely on a method known
as Reciprocal Rank Fusion[6] (RRF). Rather than combining
the different scores associated with a single document, RRF
combines the reciprocal rank of the document in each ranked
list. Formally, given a set of D documents to be ranked, and
a set of rankings R, we determine the new score of each
document d € D as:

RRF-Score(d € D) = Z m (1)
reR

where r(d) is the rank of document d in ranking r, and k is a
parameter intended to reduce the impact of low ranks on the
score (in our experiments, we used k = 60 as recommended
by the original authors). Thus, the role of the aspect fusion
step is to combine the ranked list of documents obtained for
each aspect of the topic using Equation 1 to produce a single
ranked list of documents for the topic.

3.7 Similarity Fusion

It has been widely shown that for many machine learn-
ing evaluations, the top performing systems often combine
a large variety of models. We were interested in learning
whether this behavior was true for information retrieval
problems as well. Thus, the role of the similarity fusion step
entailed two steps: (1) the document retrieval process was
repeated using a number of different similarity measures
(or relevance models), and (2) the resultant ranked lists of
documents were combined to produce a single ranked list.
As with aspect fusion, we relied on reciprocal rank fusion
(RRF) to combine the ranked list of documents retrieved for
each similarity measure. In our experiments, we considered



Feature Description

Feature Description

BM25 statistics from each disease (without expansions) of ¢; for f; in d;
LMD statistics from each disease (without expansions) of #; for f; in d;
F2Exp statistics from each disease (without expansions) of ¢; for f; in d;
DFI statistics from each disease (without expansions) of #; for f; in d;
TF-IDF statistics from each disease (without expansions) of ¢; for f; in d;

F2Exp statistics from each gene (without expansions) of ¢; for f; in d;
DFI statistics from each gene (without expansions) of ¢; for f; in d;
TF-IDF statistics from each gene (without expansions) of ¢; for f; in d;

BM25 statistics from each disease (with expansions) of ¢; for f; in d;
LMD statistics from each disease (with expansions) of ¢; for f; in d;
F2Exp statistics from each disease (with expansions) of ¢; for f; in d;
DFI statistics from each disease (with expansions) of ¢; for f; in d;
TF-IDF statistics from each disease (with expansions) of ¢; for f; in d;

BM25 statistics from each gene (with expansions) of ¢; for f; in d;
LMD statistics from each gene (with expansions) of ¢; for f; in d;
F2Exp statistics from each gene (with expansions) of ¢; for f; in d;
DFI statistics from each gene (with expansions) of ¢; for f; in d;
TF-IDF statistics from each gene (with expansions) of ¢; for f; in d;

BM25 statistics from each gene (without expansions) of ¢; for f; in d;
LMD statistics from each gene (without expansions) of ¢; for f; in d;

BM25 statistics from each medical problem of ¢; for f; in d;
LMD statistics from each medical problem of ¢; for f; in d;
F2Exp statistics from each medical problem of ¢; for f; in d;
DFI statistics from each medical problem of ¢; for f; in d;
TF-IDF statistics from each medical problem of ¢; for f; in d;

Table 4. Features extracted for field f; in document d; retrieved for topic ¢;.

eight similarity measures: Base Model 25[14] (BM25) , TF-
IDF, Divergence from Randomness (DFR)[2], Information-
based Similarity[5], Dirichlet-smoothed Language Model
Similarity[16], Jelinek-Mercer-smoothed Language Model
Similarity[16], Axiomatic Similarity[9], and Divergence from
Independence[12].

3.8 Learning to Rank

We leveraged the relevance judgments produced for TREC-
PM 2017 by training a Random Forest to re-rank the doc-
uments retrieved for both tasks. Learning-to-rank (L2R) is
used to learn a precision-medicine-specific relevance model
based on the relevance judgments produced for TREC-PM
2017. Specifically, we (1) we extract features characterizing
the relevance between that a article/trial and the topic and
represent each article/trial retrieved for each topic as a fea-
ture vector, and (2) train a relevance model to infer relevance
of an article/trial to the topic based solely on the extracted
features and relevance judgments produced during TREC-
PM 2017.

Field

Abstract Text
Article Title
MeSH Terms

Official Title
Description
MeSH Terms
Keywords
Inclusion Criteria
Exclusion Criteria

Table 5. Fields used for each task.

Task
Task A

Task B

3.8.1 Feature Extraction

Determining if an article or clinical trial is relevant to a topic
requires considering information about the topic’s disease,
genetic variants, and demographics. For this reason, ranking
articles and clinical trials requires a rich set of features. When
extracting features we consider (1) the different fields of the
article or trial (e.g. title, main body of text, and MeSH terms),
(2) the different aspects of the topic, (3) the expansions of
each aspect (e.g. genetic variants), and (4) multiple relevance
models.

As shown in Table 4, each feature measures the relevance
between an aspect of the topic and a field of the document.
We considered five measures of relevance: (1) Best Match
25[14] (BM25), (2) Dirichlet-Smoothed language model prob-
ability [16] (LMD), (3) Axiomatic relevance [9] (F2Exp), (4)
Divergence from Independence [12] (DFI), and (5) Term
Frequency-Inverse Document Frequency [15] (TF-IDF). As
Task A and Task B use different document collections, we use
different fields for each task which are shown in Table 5. We
additionally extract features both with and without expand-
ing each aspect. To account for the variance in the number of
genes and diseases, we measure five statistics capturing the
similarity between each disease and genetic variant for each
topic, namely, the mean, minimum, maximum, variance, and
sum.

3.8.2 Training the Relevance Model

We trained a Random Forest[4] to measure the relevance of
each retrieved article/trial to a given topic by (1) extracting
features from all articles/trials retrieved for each topic in
TREC-PM 2017, and (2) maximizing the mean average preci-
sion (MAP) of the re-ranking produced by the model using
the relevance judgments produced for TREC-PM 2017. To



Task A Task B
System (Run) infNDCG P@10 R-Prec infNDCG P@10 R-Prec
Run 1: UTDHLTRI_NL 0.4797 0.6160 0.2870 0.4794 0.5380  0.3675
Run 2: UTDHLTRI_SF 0.3668  0.5360 0.1996 0.4139  0.4640 0.3102
Run 3: UTDHLTRI_SS 0.3554 0.4920 0.1936 0.4554 0.5360 0.3920
Run 4: UTDHLTRI_RF 0.3827 0.5300  0.2088 0.4587 0.4960  0.3444
Run 5: UTDHLTRI_RA 0.4113 0.5440  0.2291 0.4629 0.5380  0.3785

Table 6. Average performance across each topic for TREC PM.

Run ‘ Simple ‘ Aspect ‘ Similarity ‘ Joint ‘ L2R
UTDHLTRI_NL v v

UTDHLTRI_SF v v
UTDHLTRI_SS v v
UTDHLTRI_RF v v v
UTDHLTRI_RA v v v v v

Table 7. System configuration for each run, where “Simple”
indicates the run used a simple rule-based search strategy,
“Aspect” indicates that the run used Aspect-fusion, “Simi-
larity” indicates that the run used Similarity-fusion, “Joint”
indicates the Joint Retrieval strategy was used, and “L2R” in-
dicates that the run incorporated learning-to-rank to re-rank
retrieved documents.

do this, we used RankLib[8], a Java library with implemen-
tations of many learning-to-rank algorithms.>

4 Overview of Runs

We submitted five runs relying on (a) different configurations
of our system as well as (b) a simple rule-based strategy
considering only the disease and genes of the topic. Table 7
presents the configurations of the system for each run; in
the case of learning-to-rank (L2R) runs, the table indicates
the configuration of the system when retrieving the initial
set of article/trial which are re-ranked using L2R. Each of
these runs is detailed below:

e Run 1: UTDHLTRI_NL This run relied on the As-
pect Retrieval strategy and incorporated both Aspect
Fusion and Similarity Fusion. This run did not use our
L2R model;

e Run 2: UTDHLTRI_SF This run relied on Similarity
Fusion to perform the initial retrieval of documents,
and re-ranked the returned documents using our L2R
model;

e Run 3: UTDHLTRI_SS This run used a very simple
rule-based search strategy considering only the disease
and genes of the topic for the initial retrieval, and re-
ranked the returned documents using our L2R model;

3 Random Forests were selected based on training set performance.

¢ Run 4: UTDHLTRI_RF This run relied on Aspect
Fusion and Similarity Fusion to perform the initial
document retrieval, and re-ranked the returned docu-
ments using our L2R model (this is essentially Run 1
with L2R incorporated); and

e Run 5: UTDHLTRI_RA This run combined the re-
sults of the Simple, Joint, and Aspect-based strategies
into a single list of results, and re-ranked the entire
list using our L2R model.

5 Results

Table 6 presents the average performance of each of our runs
for both tasks. For both tasks, we report the inferred NDCG
(infNDCG), Precision at 10 (P@10), and R-Precision (R-Prec).
In general, the best performance was obtained by Run 1
which incorporated Aspect Retrieval and Aspect Fusion. For
Task B, Runs 3 and 5 obtained higher R-Prec than Run 1, but
lower infNDCG and P@10, suggesting that, for some topics,
the simple retrieval strategy was able to retrieve relevant
documents that were not retrieved by the aspect nor joint
retrieval strategies.

6 Conclusion

In this paper, we described our system designed for the TREC
2018 Precision Medicine track. For both tasks, we submitted
five runs corresponding to alternative configurations of our
system. Our system incorporates an aspect-based retrieval
paradigm wherein each of the four structured components
is considered as an aspect, along with two “hidden” aspects
encoding the need for retrieved documents to be within
the domain of precision medicine and to have a focus on
treatment. To this end, we construct knowledge graph en-
coding the relationship between genes, mutations, and drugs.
Additionally, for this year’s evaluation, we added a learn-
ing to rank component. Experimental results suggest that
learning-to-rank provided no substantial improvement in
performance.
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